Posts Tagged ‘Popescu Daniel’

Anclansarea Automata a Rezervei pentru un spital

10/01/2012

Va supun atentie un articol interesant referitor la aplicatii practice ale AAR

Dl Ing Iancu Nicolae a studiat mult automatele programabile care permit realizarea unor scheme complexe de AAR. Poate fi contactat prin intermediul blogului pentru consultanta.

 Aspecte specifice anclanşării automate a rezervei (AAR)  pentru alimentarea cu energie electrică a unui spital

POPESCU DANIEL – Facultatea de Instalaţii, U.T.C.B., dpopescu@instal.utcb.ro

IANCU  NICOLAE  – Facultatea de Instalaţii, U.T.C.B., nicu1iancu@yahoo.com

Abstract

The article treats the problem of automatic operate of  a reserve electricity  power supply to a hospital (AAR),  for uninterrupted supply of electricity to major consumers and has a number of specific issues related to design and implement of such an automated system for a hospital.

It shows undesirable effects that may be supported by the consumer in case of accidental interruptions in power supply, or in other cases in which is negatively affected the continuity of supply of electricity.

The article propose a concrete solution to achieve an automated system forAARto a hospital. Control logic is implemented with existing programmable controllers, using specific programming techniques.

Finally, the article presents a series of conclusions which recommends using programmable controllers in applications aimed uninterrupted electricity supply to consumers.

1. Anclanşarea automată a rezervei – necesitate pentru alimentarea

neîntreruptă cu energie electrică a consumatorilor vitali

Anclanşarea automată a rezervei (AAR) reprezintă operaţia de conectare rapidă a con­sumatorilor electrici la un circuit de rezervă (linie electrică sau transformator), în cazul căderii circuitului normal de alimen­tare, ca urmare a unui deranjament sau a unei deconectări impuse de către dispozitivele de protecţie [1,2]. Operaţia poate fi aplicată consumatorilor sensibili la goluri de tensiune [3] ce beneficiază de două sau mai multe alimentări cu energie electrică din surse diferite.

Impactul negativ al golurilor de tensiune asupra calităţii energiei electrice furnizate consumatorilor este deosebit de important şi depinde de tipul acestor goluri de tensiune cât şi de curbele de acceptabilitate ale diferitelor clase de echipamente consumatoare de energie electrică [4]. Golul de tensiune se defineşte ca o reducere bruscă de tensiune, sub un nivel de prag, urmată de o revenire după un interval de timp relativ scurt. Nivelul acestei perturbaţii ce afectează negativ consumatorii este determinat atât de procentul de reducere al tensiunii cât şi de durată [5].

Consumatorii foarte importanţi ce nu suporta golurile de tensiune, materializate prin întreruperea accidentala a furnizării energiei electrice, sunt denumiţi consumatori vitali.

Efectele produse de golurile de tensiune pot afecta sănătatea umană, chiar şi viaţa, în cazul activităţii în domeniul sanitar (spre exemplu aparatura sălilor de operaţie sau a centrelor de dializă), mediul înconjurător în cazul echipamentelor de depoluare atmosferică şi epurare a apei, confortul sau siguranţa oamenilor în cazul sălilor de conferinţă, de spectacole, etc.

Pentru evitarea acestor efecte se alege soluţia alimentării consumatorilor vitali din alte surse disponibile, în cazul întreruperii accidentale a alimentării de bază. Aceste surse pot proveni din alte reţele sau dintr-un grup electrogenerator propriu. Reţelele electrice de rezervă pot prelua în întregime puterea consumată. În cazul grupului electrogenerator, acesta dispune de putere limitată şi de aceea se va face o selecţie a consumatorilor ce vor rămâne cuplaţi la acesta, în funcţie de importanţa consumatorilor.

Alimentarea consumatorilor vitali din sursele de rezervă, în cazul întreruperii accidentale a alimentării de bază, se face cu ajutorul unui echipament AAR. Acesta asigură  continuitatea alimentării cu energie electrică a consumatorilor ce nu suporta goluri de tensiune cu o durată mai mare de 2÷3 secunde.

În general, AAR este necesară pentru alimentarea cu energie electrică:

– în instalaţii cu flux continuu şi în diferite procese tehnologice;

– în spitale sau instituţii publice de interes naţional unde continuitatea în funcţionare este un factor vital;

– în zonele în care există probleme în alimentarea cu energie electrică.

2. Tehnici de realizare a sistemelor pentru anclanşarea automată a rezervei

Sistemele pentru anclanşarea automată a rezervei asigură continuitatea în alimentarea cu energie electrică. Acestea determină conectarea automată a alimentării de rezervă în cazul deconectării alimentării normale, sau altfel spus realizează trecerea de pe alimentarea normală din reţea pe o rezervă care poate să fie o altă reţea sau un grup electrogenerator.

Soluţia cea mai întâlnită în prezent este AAR reversibilă clasică, care foloseşte pentru comutarea între sursele de alimentare normale şi de rezervă, un automat dedicat a cărui funcţie principală este supravegherea sursei normale şi comutarea pe sursa de rezervă, atât timp cât sursa normală nu este disponibilă.

Sistemele AAR actuale dispun uzual de două sau trei întreruptoare echipate cu protecţie la scurtcircuit şi suprasarcină, interblocaj electric şi mecanic, contacte ON/OFF. Principalele caracteristici ale acestora sunt următoarele:

  • asigură      trecerea de pe sursa de bază pe cea de rezervă, într-un interval de timp      reglabil între 0,1s şi 30s, pentru ca întreruperea să afecteze cât mai puţin      receptoarele;
  • asigura      protecţia la scurtcircuit şi suprasarcină a circuitelor din aval;
  • nu      permit închiderea simultană a întreruptoarelor chiar şi în regim      tranzitoriu;
  • indică      starea întreruptoarelor după declanşarea datorată unui scurtcircuit;
  • acţio­nează numai după deconectarea circuitului de alimentare normală;
  • au o temporizare suficientă, în special la tensiuni peste 110 kV,      pentru asi­gurarea deionizării spaţiului în care sa produs arcul electric      în cazul unui scurtcircuit;
  • nu se permite repetarea anclanşării la defecte persistente.

În exemplul din figura 1 se ilustrează modul în care acţionează AAR pe o schemă electrică monofilară. Se alimentează normal, separat, două bare prin transformatoarele T1 şi T2, sau se alimentează din sursa de rezervă, în comun, ambele bare prin transformatorul Tr. Fiecare bară este prevăzută cu propriul sistem AAR care supraveghează prezenţa tensiunii pe bară cu ajutorul transformatorului de tensiune TT. Dispariţia tensiunii electrice pe una din bare sau pe ambele bare, determină o instalaţie AAR sau ambele instalaţii AAR să acţioneze asupra întreruptorului / întreruptoarelor IA, în sensul deschiderii spre linia de alimentare normală şi în sensul închiderii spre linia de alimentare de rezervă. La întreruperea alimentării date de oricare din transformatoarele T1 sau T2 se conectează automat întreruptorul transformatorului Tr.

Implementarea sistemului de conducere al unui AAR se realizează în două variante:

–          cu logică cablată folosind contacte şi relee (se folosesc relee care comandă întreruptoarele automate);

–          cu logică programată (se folosesc automate programabile şi tehnici adecvate de programare; manevrele de anclanşare a rezervei se fac după o logică programată).

Pentru ambele variante de implementare, sistemul de comandă al AAR primeşte informaţii despre starea dispozitivelor de protecţie, despre starea contactelor auxiliare ale întreruptorului circuitului de ali­mentare normală şi despre starea tensiunii pe barele de alimentare şi apoi, conform procedurilor din sistemul electroenergetic, comandă corespunzător întreruptoarele IA.

În exemplul din figura 2 se prezintă schema de principiu a unei instalaţii AAR [6] ce alimentează barele staţiei C prin linia principală L1, din staţia A şi linia de rezervă L2 din staţia B.

            Semnificaţiile notaţiilor din figura 2 sunt următoarele: Q1…Q4 – întreruptoare, BD – bobina declanşatorului, TT – transformator de tensiune, F1, F2, F3 – relee minimale de tensiune, K1T – releu de timp cu temporizare la revenire, K2T– releu de timp cu temporizare la acţionare, K3 – releu intermediar.

În funcţionarea normală alimentarea staţiei C se face prin linia L1, întreruptorul Q1 fiind închis; deci releul intermediar cu temporizare K1T este acţionat, datorită contactelor 14-16, 18-20 ale întreruptorului Q2, având cele două contacte închise. Dacă valoarea tensiunii de la staţia C este în domeniul admisibil, atunci releele minimale de tensiune F1 şi F2, alimentate de la barele staţiei C printr-un transformator de tensiune nereprezentat în schemă, sunt acţionate şi au contactele deschise. Dacă pe linia de rezervă L2 avem tensiune, atunci releul maximal de tensiune F3 (alimentat prin TT) este acţionat şi contactul său este închis.

Dacă printr-un motiv oarecare se declanşează întreruptorul Q2, atunci contactele sale auxiliare 14-16 şi 18-20 se deschid şi contactul 11-13 se închide. Astfel releul K1T rămâne fără alimentare, dar prin contactul 11-13 al întreruptorului Q2 contactul inferior cu temporizare la deschidere al releului K1T şi contactul închis 11-13 al întreruptorului Q4 se alimentează bobina de anclanşare BA a întreruptorului Q4. Aceasta conduce la alimentarea staţiei prin linia de rezervă L2.

Anclanşarea automată a rezervei are loc şi în cazurile în care alimentarea de bază dispare, ca urmare a declanşării întreruptorului Q1 a liniei L1,sau dacă tensiunea la barele staţiei C scade sub o valoarea admisibilă.

La dispariţia sau scăderea tensiunii la barele staţiei C, releele minimale de tensiune F1 şi F2 îşi închid contactele şi provoacă prin contactul superior închis al releului K1T şi contactul închis al releului F3 alimentarea releului de timp K2T, care după timpul reglat comandă prin releul intermediar K3 alimentarea bobinei de declanşare BD a întreruptorului Q2. Declanşarea întreruptorului Q2 determină în modul descris anterior anclanşarea automată a întreruptorului Q4 şi deci alimentarea staţiei C de la linia de rezervă.

3. Sistem automat pentru anclanşarea automată a rezervei în cazul

unui spital

Pentru consumatorii vitali, cum ar fi spitalele, se impune existenţa unei a treia surse de alimentare, pentru situaţii în care din motive neprevăzute nici cea de a doua  alimentare considerată de rezervă nu este
funcţională. Cea de-a treia sursă de alimentare cu energie electrică este de obicei un grup electrogenerator, care în funcţie de puterea sa poate prelua numai o anumită parte din consumul total.

Soluţia concretă de realizare a unui sistem automat pentru AAR la un spital, prezentată în acest articol, se bazează pe schema electrică monofilară adoptată pentru alimentarea cu energie electrica prezentată în figura 3.

Rapiditatea funcţionării AAR depinde de timpii de reacţie proprii întreruptoarelor Q1a, Q1b, Q2b amplasaţi pe cele trei alimentari şi de timpul de intrare în parametrii nominali de funcţionare ai grupului electrogennerator.

Funcţionarea AAR pentru un spital, conform schemei din figura 3, se prezintă în continuare.

În cazul unei avarii la sursa 1 (de bază) sau pe linia de alimentare de la sursa 1 abarelor „b”, dispozitivul AAR va comanda anclanşarea întreruptorului Q2b, al sursei 2 (de rezervă), ţinând cont de condiţia de declanşare a întreruptorului Q1b şi de existenţa tensiunii la sursa 2. Tensiunea sursei 2 este supravegheată cu ajutorul releului F1.2.

Odată cu declanşarea sursei 1 se va comanda şi pornirea grupului electrogen, care va trebui să îşi realizeze ciclul de pornire pentru a ajunge la parametrii nominali de funcţionare. În cazul în care sursa 2 va fi conectată la sistemul de bare „b” şi funcţionează la parametrii normali, atunci se va comanda oprirea grupului electrogen.

În situaţia în care parametrii de funcţionare ai sursei 2 nu corespund sau întreruptorul Q2b al acesteia este indisponibil, atunci se va comanda anclanşarea întreruptorului Q1a al grupului electrogenerator, numai după îndeplinirea următoarelor condiţii: deschiderea cuplei Q0a şi intrarea în regim normal de funcţionare a generatorului (tensiunea se supraveghează cu ajutorul releului F1.3.).

Pentru funcţionarea corectă a AAR este necesară supravegherea tensiunii fazelor şi succesiunea corectă a acestora, pentru cele trei alimentari (sursa 1, sursa 2, generator), cât şi pe cele două sisteme de bare „a” şi „b”, cu ajutorul F1.1, F1.2, F1.3, F1.4, F1.5.

Logica de comandă pentru AAR se implementează pe un automat programabil, folosind tehnici specifice de programare [7,8].

Principalele etape necesare a fi parcurse pentru realizarea AAR implementat cu automat programabil pentru un spital sunt următoarele:

–          se întocmeşte caietul de sarcini al automatului secvenţial pentru comanda instalaţiei AAR sub forma GRAFCET sau reţea Petri;

–          se codifică etapele sau locaţiile în cod distributiv;

–          se stabilesc ecuaţiile logice pentru biţii de stare;

–          se stabilesc ecuaţiile logice pentru mărimile de ieşire (comandă);

–          se scrie programul de lucru al automatului programabil;

–          se întocmeşte schema de conexiuni electrice pentru automatul programabil.

4. Concluzii privind utilizarea automatelor programabile în sistemele de anclanşare automată a rezervei

Scopul realizării AAR este acela de a asigura continuitatea în alimentarea cu energie electrică a consumatorilor vitali sau a consumatorilor care au o anumită importanţă.

Sistemele de AAR pot fi diversificate astfel încât să răspundă la diferite situaţii practice: 2÷4 linii de alimentare, cuple între barele de alimentare şi grupuri electrogene.

Comanda configuraţiilor atipice de AAR se recomandă a fi realizate cu automat programabil şi cu interfaţă alfanumerică pentru setarea unor parametri şi pentru diagnoza sistemului. Utilizarea logicii programate oferă o paletă largă de posibilităţi privind cerinţele de funcţionare ale sistemului în functie de cerinţele impuse.

Principalele avantaje ale implementării sistemelor de comandă pentru AAR cu automate programabile sunt următoarele:

–          reducerea numărului de componente şi a numărului de conexiuni necesare realizării AAR;

–          reducerea la minim a numărului de dispozitive electrice cu comutaţie dinamică prin folosirea dispozitivelor cu comutaţie statică;

–          creşterea fiabilităţii instalaţiei AAR;

–          automatul programabil poate rula programul de lucru independent de calculator;

Bibliografie

[1] *** Dicţionar electrotehnic, http://www.instalatiielectrice.lx.ro/ie_h_glosara2.html

[2] *** http://www.elewatt.ro/Instalatii-electrice/Agenda-tehnica/anclansarea-automata-a-rezervei-aar.html

[3] Albu, M., M., Goluri de tensiune. Caracteristici, tehnici de monitorizare şi definire a unui indice de calitate a serviciului de furnizare a energiei electrice., Revista Energetica, cod CNCSIS 512, categoria B, ISSN 1220-5133, februarie 2004.

[4]  Stoian, C., Călugăru, Şt., Rusu, L., Ultrarpid device for automatic release of the spare, The 6th International Power Systems Conference, pp. 535-540.

[5] *** https://stoianconstantin.wordpress.com/alimentarea-fara-intrerupere-a-consumatorilor

[6] Popescu, L., Echipamente electrice, vol. II, Editura Alma Mater, Sibiu, 2008.

[7] Cerchez, A., M., Dispozitiv de anclanşare automată a rezervei realizat în tehnologie digitală.

[8] Popescu, D., Automate programabile. Construcţie, funcţionare, programare şi aplicaţii, Editura MATRIX ROM Bucureşti, 2005, cod CNCSIS 39, ISBN 973-685-942-8.